Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Domain-robust VQA with diverse datasets and methods but no target labels (2103.15974v1)

Published 29 Mar 2021 in cs.CV

Abstract: The observation that computer vision methods overfit to dataset specifics has inspired diverse attempts to make object recognition models robust to domain shifts. However, similar work on domain-robust visual question answering methods is very limited. Domain adaptation for VQA differs from adaptation for object recognition due to additional complexity: VQA models handle multimodal inputs, methods contain multiple steps with diverse modules resulting in complex optimization, and answer spaces in different datasets are vastly different. To tackle these challenges, we first quantify domain shifts between popular VQA datasets, in both visual and textual space. To disentangle shifts between datasets arising from different modalities, we also construct synthetic shifts in the image and question domains separately. Second, we test the robustness of different families of VQA methods (classic two-stream, transformer, and neuro-symbolic methods) to these shifts. Third, we test the applicability of existing domain adaptation methods and devise a new one to bridge VQA domain gaps, adjusted to specific VQA models. To emulate the setting of real-world generalization, we focus on unsupervised domain adaptation and the open-ended classification task formulation.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.