Papers
Topics
Authors
Recent
2000 character limit reached

Multiscale Clustering of Hyperspectral Images Through Spectral-Spatial Diffusion Geometry (2103.15783v2)

Published 29 Mar 2021 in cs.LG, cs.CV, and stat.ML

Abstract: Clustering algorithms partition a dataset into groups of similar points. The primary contribution of this article is the Multiscale Spatially-Regularized Diffusion Learning (M-SRDL) clustering algorithm, which uses spatially-regularized diffusion distances to efficiently and accurately learn multiple scales of latent structure in hyperspectral images. The M-SRDL clustering algorithm extracts clusterings at many scales from a hyperspectral image and outputs these clusterings' variation of information-barycenter as an exemplar for all underlying cluster structure. We show that incorporating spatial regularization into a multiscale clustering framework results in smoother and more coherent clusters when applied to hyperspectral data, yielding more accurate clustering labels.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.