Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Backpropagation Through Time For Networks With Long-Term Dependencies (2103.15589v3)

Published 26 Mar 2021 in cs.LG

Abstract: Backpropagation through time (BPTT) is a technique of updating tuned parameters within recurrent neural networks (RNNs). Several attempts at creating such an algorithm have been made including: Nth Ordered Approximations and Truncated-BPTT. These methods approximate the backpropagation gradients under the assumption that the RNN only utilises short-term dependencies. This is an acceptable assumption to make for the current state of artificial neural networks. As RNNs become more advanced, a shift towards influence by long-term dependencies is likely. Thus, a new method for backpropagation is required. We propose using the 'discrete forward sensitivity equation' and a variant of it for single and multiple interacting recurrent loops respectively. This solution is exact and also allows the network's parameters to vary between each subsequent step, however it does require the computation of a Jacobian.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.