Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning on heterogeneous graphs using high-order relations (2103.15532v2)

Published 29 Mar 2021 in stat.ML, cs.AI, and cs.LG

Abstract: A heterogeneous graph consists of different vertices and edges types. Learning on heterogeneous graphs typically employs meta-paths to deal with the heterogeneity by reducing the graph to a homogeneous network, guide random walks or capture semantics. These methods are however sensitive to the choice of meta-paths, with suboptimal paths leading to poor performance. In this paper, we propose an approach for learning on heterogeneous graphs without using meta-paths. Specifically, we decompose a heterogeneous graph into different homogeneous relation-type graphs, which are then combined to create higher-order relation-type representations. These representations preserve the heterogeneity of edges and retain their edge directions while capturing the interaction of different vertex types multiple hops apart. This is then complemented with attention mechanisms to distinguish the importance of the relation-type based neighbors and the relation-types themselves. Experiments demonstrate that our model generally outperforms other state-of-the-art baselines in the vertex classification task on three commonly studied heterogeneous graph datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.