Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Context-aware short-term interest first model for session-based recommendation (2103.15514v1)

Published 29 Mar 2021 in cs.IR and cs.AI

Abstract: In the case that user profiles are not available, the recommendation based on anonymous session is particularly important, which aims to predict the items that the user may click at the next moment based on the user's access sequence over a while. In recent years, with the development of recurrent neural network, attention mechanism, and graph neural network, the performance of session-based recommendation has been greatly improved. However, the previous methods did not comprehensively consider the context dependencies and short-term interest first of the session. Therefore, we propose a context-aware short-term interest first model (CASIF).The aim of this paper is improve the accuracy of recommendations by combining context and short-term interest. In CASIF, we dynamically construct a graph structure for session sequences and capture rich context dependencies via graph neural network (GNN), latent feature vectors are captured as inputs of the next step. Then we build the short-term interest first module, which can to capture the user's general interest from the session in the context of long-term memory, at the same time get the user's current interest from the item of the last click. In the end, the short-term and long-term interest are combined as the final interest and multiplied by the candidate vector to obtain the recommendation probability. Finally, a large number of experiments on two real-world datasets demonstrate the effectiveness of our proposed method.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)