Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Phase transition in noisy high-dimensional random geometric graphs (2103.15249v1)

Published 28 Mar 2021 in math.PR, cs.IT, cs.SI, math.IT, math.ST, and stat.TH

Abstract: We study the problem of detecting latent geometric structure in random graphs. To this end, we consider the soft high-dimensional random geometric graph $\mathcal{G}(n,p,d,q)$, where each of the $n$ vertices corresponds to an independent random point distributed uniformly on the sphere $\mathbb{S}{d-1}$, and the probability that two vertices are connected by an edge is a decreasing function of the Euclidean distance between the points. The probability of connection is parametrized by $q \in [0,1]$, with smaller $q$ corresponding to weaker dependence on the geometry; this can also be interpreted as the level of noise in the geometric graph. In particular, the model smoothly interpolates between the spherical hard random geometric graph $\mathcal{G}(n,p,d)$ (corresponding to $q = 1$) and the Erd\H{o}s-R\'enyi model $\mathcal{G}(n,p)$ (corresponding to $q = 0$). We focus on the dense regime (i.e., $p$ is a constant). We show that if $nq \to 0$ or $d \gg n{3} q{2}$, then geometry is lost: $\mathcal{G}(n,p,d,q)$ is asymptotically indistinguishable from $\mathcal{G}(n,p)$. On the other hand, if $d \ll n{3} q{6}$, then the signed triangle statistic provides an asymptotically powerful test for detecting geometry. These results generalize those of Bubeck, Ding, Eldan, and R\'acz (2016) for $\mathcal{G}(n,p,d)$, and give quantitative bounds on how the noise level affects the dimension threshold for losing geometry. We also prove analogous results under a related but different distributional assumption, and we further explore generalizations of signed triangles in order to understand the intermediate regime left open by our results.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)