Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Synchronization and Control for Multi-Weighted and Directed Complex Networks (2103.15230v1)

Published 28 Mar 2021 in eess.SY, cs.MA, and cs.SY

Abstract: The study of complex networks with multi-weights has been a hot topic recently. For a network with a single weight, previous studies have shown that they can promote synchronization. But for complex networks with multi-weights, there are no rigorous analysis to show that synchronization can be reached faster. In this paper, the complex network is allowed to be directed, which will make the synchronization analysis difficult for multiple couplings. In virtue of the normalized left eigenvectors (NLEVec) corresponding to the zero eigenvalue of coupling matrices, we prove that if the Chebyshev distance between NLEVec is less than some value, which is defined as the allowable deviation bound, then the synchronization and control will be realized with sufficiently large coupling strengths, i.e., all coupling matrices do accelerate synchronization. Moreover, adaptive rules are also designed for the coupling strength.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.