Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (2103.14943v2)

Published 27 Mar 2021 in cs.CV

Abstract: High dynamic range (HDR) video reconstruction from sequences captured with alternating exposures is a very challenging problem. Existing methods often align low dynamic range (LDR) input sequence in the image space using optical flow, and then merge the aligned images to produce HDR output. However, accurate alignment and fusion in the image space are difficult due to the missing details in the over-exposed regions and noise in the under-exposed regions, resulting in unpleasing ghosting artifacts. To enable more accurate alignment and HDR fusion, we introduce a coarse-to-fine deep learning framework for HDR video reconstruction. Firstly, we perform coarse alignment and pixel blending in the image space to estimate the coarse HDR video. Secondly, we conduct more sophisticated alignment and temporal fusion in the feature space of the coarse HDR video to produce better reconstruction. Considering the fact that there is no publicly available dataset for quantitative and comprehensive evaluation of HDR video reconstruction methods, we collect such a benchmark dataset, which contains $97$ sequences of static scenes and 184 testing pairs of dynamic scenes. Extensive experiments show that our method outperforms previous state-of-the-art methods. Our dataset, code and model will be made publicly available.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube