Papers
Topics
Authors
Recent
2000 character limit reached

You Can Do Better! If You Elaborate the Reason When Making Prediction (2103.14919v2)

Published 27 Mar 2021 in cs.CL and cs.AI

Abstract: Neural predictive models have achieved remarkable performance improvements in various natural language processing tasks. However, most neural predictive models suffer from the lack of explainability of predictions, limiting their practical utility. This paper proposes a neural predictive approach to make a prediction and generate its corresponding explanation simultaneously. It leverages the knowledge entailed in explanations as an additional distillation signal for more efficient learning. We conduct a preliminary study on Chinese medical multiple-choice question answering, English natural language inference, and commonsense question answering tasks. The experimental results show that the proposed approach can generate reasonable explanations for its predictions even with a small-scale training corpus. The proposed method also achieves improved prediction accuracy on three datasets, which indicates that making predictions can benefit from generating the explanation in the decision process.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.