Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Model-Free Learning of Safe yet Effective Controllers (2103.14600v2)

Published 26 Mar 2021 in cs.RO, cs.FL, cs.LG, and cs.LO

Abstract: We study the problem of learning safe control policies that are also effective; i.e., maximizing the probability of satisfying a linear temporal logic (LTL) specification of a task, and the discounted reward capturing the (classic) control performance. We consider unknown environments modeled as Markov decision processes. We propose a model-free reinforcement learning algorithm that learns a policy that first maximizes the probability of ensuring safety, then the probability of satisfying the given LTL specification and lastly, the sum of discounted Quality of Control rewards. Finally, we illustrate applicability of our RL-based approach.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.