Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Collecting large-scale publication data at the level of individual researchers: A practical proposal for author name disambiguation (2103.14558v1)

Published 26 Mar 2021 in cs.DL

Abstract: The disambiguation of author names is an important and challenging task in bibliometrics. We propose an approach that relies on an external source of information for selecting and validating clusters of publications identified through an unsupervised author name disambiguation method. The application of the proposed approach to a random sample of Italian scholars shows encouraging results, with an overall precision, recall, and F-Measure of over 96%. The proposed approach can serve as a starting point for large-scale census of publication portfolios for bibliometric analyses at the level of individual researchers.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.