Incorporating Connections Beyond Knowledge Embeddings: A Plug-and-Play Module to Enhance Commonsense Reasoning in Machine Reading Comprehension (2103.14443v1)
Abstract: Conventional Machine Reading Comprehension (MRC) has been well-addressed by pattern matching, but the ability of commonsense reasoning remains a gap between humans and machines. Previous methods tackle this problem by enriching word representations via pre-trained Knowledge Graph Embeddings (KGE). However, they make limited use of a large number of connections between nodes in Knowledge Graphs (KG), which could be pivotal cues to build the commonsense reasoning chains. In this paper, we propose a Plug-and-play module to IncorporatE Connection information for commonsEnse Reasoning (PIECER). Beyond enriching word representations with knowledge embeddings, PIECER constructs a joint query-passage graph to explicitly guide commonsense reasoning by the knowledge-oriented connections between words. Further, PIECER has high generalizability since it can be plugged into suitable positions in any MRC model. Experimental results on ReCoRD, a large-scale public MRC dataset requiring commonsense reasoning, show that PIECER introduces stable performance improvements for four representative base MRC models, especially in low-resource settings.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.