Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Incorporating Connections Beyond Knowledge Embeddings: A Plug-and-Play Module to Enhance Commonsense Reasoning in Machine Reading Comprehension (2103.14443v1)

Published 26 Mar 2021 in cs.CL and cs.AI

Abstract: Conventional Machine Reading Comprehension (MRC) has been well-addressed by pattern matching, but the ability of commonsense reasoning remains a gap between humans and machines. Previous methods tackle this problem by enriching word representations via pre-trained Knowledge Graph Embeddings (KGE). However, they make limited use of a large number of connections between nodes in Knowledge Graphs (KG), which could be pivotal cues to build the commonsense reasoning chains. In this paper, we propose a Plug-and-play module to IncorporatE Connection information for commonsEnse Reasoning (PIECER). Beyond enriching word representations with knowledge embeddings, PIECER constructs a joint query-passage graph to explicitly guide commonsense reasoning by the knowledge-oriented connections between words. Further, PIECER has high generalizability since it can be plugged into suitable positions in any MRC model. Experimental results on ReCoRD, a large-scale public MRC dataset requiring commonsense reasoning, show that PIECER introduces stable performance improvements for four representative base MRC models, especially in low-resource settings.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.