Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Combining distribution-based neural networks to predict weather forecast probabilities (2103.14430v2)

Published 26 Mar 2021 in stat.ML, cs.LG, physics.ao-ph, and physics.data-an

Abstract: The success of deep learning techniques over the last decades has opened up a new avenue of research for weather forecasting. Here, we take the novel approach of using a neural network to predict full probability density functions at each point in space and time rather than a single output value, thus producing a probabilistic weather forecast. This enables the calculation of both uncertainty and skill metrics for the neural network predictions, and overcomes the common difficulty of inferring uncertainty from these predictions. This approach is data-driven and the neural network is trained on the WeatherBench dataset (processed ERA5 data) to forecast geopotential and temperature 3 and 5 days ahead. Data exploration leads to the identification of the most important input variables, which are also found to agree with physical reasoning, thereby validating our approach. In order to increase computational efficiency further, each neural network is trained on a small subset of these variables. The outputs are then combined through a stacked neural network, the first time such a technique has been applied to weather data. Our approach is found to be more accurate than some numerical weather prediction models and as accurate as more complex alternative neural networks, with the added benefit of providing key probabilistic information necessary for making informed weather forecasts.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.