Papers
Topics
Authors
Recent
2000 character limit reached

Guided Training: A Simple Method for Single-channel Speaker Separation (2103.14330v1)

Published 26 Mar 2021 in cs.SD, cs.AI, and eess.AS

Abstract: Deep learning has shown a great potential for speech separation, especially for speech and non-speech separation. However, it encounters permutation problem for multi-speaker separation where both target and interference are speech. Permutation Invariant training (PIT) was proposed to solve this problem by permuting the order of the multiple speakers. Another way is to use an anchor speech, a short speech of the target speaker, to model the speaker identity. In this paper, we propose a simple strategy to train a long short-term memory (LSTM) model to solve the permutation problem in speaker separation. Specifically, we insert a short speech of target speaker at the beginning of a mixture as guide information. So, the first appearing speaker is defined as the target. Due to the powerful capability on sequence modeling, LSTM can use its memory cells to track and separate target speech from interfering speech. Experimental results show that the proposed training strategy is effective for speaker separation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.