Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

A Hybrid Queuing Model for Coordinated Vehicle Platooning on Mixed-Autonomy Highways: Training and Validation (2103.14202v1)

Published 26 Mar 2021 in eess.SY and cs.SY

Abstract: Platooning of connected and autonomous vehicles (CAVs) is an emerging technology with a strong potential for throughput improvement and fuel reduction. Adequate macroscopic models are critical for system-level efficiency and reliability of platooning. In this paper, we consider a hybrid queuing model for a mixed-autonomy highway section and develop an easy-to-use training algorithm. The model predicts CAV and non-CAV counts according to the traffic demand as well as key parameters of the highway section. The training algorithm learns the highway parameters from observed data in real time. We test the model and the algorithm in Simulation of Urban Mobility (SUMO) and show that the prediction error is around 15% in a stationary setting and around 25% in a non-stationary setting. We also show that the trained model leads to a platoon headway regulation policy very close to the simulated optimum. The proposed model and algorithm can directly support model-predictive decision-making for platooning in mixed autonomy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.