Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Beyond Low-Pass Filters: Adaptive Feature Propagation on Graphs (2103.14187v5)

Published 26 Mar 2021 in cs.LG

Abstract: Graph neural networks (GNNs) have been extensively studied for prediction tasks on graphs. As pointed out by recent studies, most GNNs assume local homophily, i.e., strong similarities in local neighborhoods. This assumption however limits the generalizability power of GNNs. To address this limitation, we propose a flexible GNN model, which is capable of handling any graphs without being restricted by their underlying homophily. At its core, this model adopts a node attention mechanism based on multiple learnable spectral filters; therefore, the aggregation scheme is learned adaptively for each graph in the spectral domain. We evaluated the proposed model on node classification tasks over eight benchmark datasets. The proposed model is shown to generalize well to both homophilic and heterophilic graphs. Further, it outperforms all state-of-the-art baselines on heterophilic graphs and performs comparably with them on homophilic graphs.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.