Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 162 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Random restrictions and PRGs for PTFs in Gaussian Space (2103.14134v2)

Published 25 Mar 2021 in cs.CC

Abstract: A polynomial threshold function (PTF) $f:\mathbb{R}n \rightarrow \mathbb{R}$ is a function of the form $f(x) = \mathsf{sign}(p(x))$ where $p$ is a polynomial of degree at most $d$. PTFs are a classical and well-studied complexity class with applications across complexity theory, learning theory, approximation theory, quantum complexity and more. We address the question of designing pseudorandom generators (PRG) for polynomial threshold functions (PTFs) in the gaussian space: design a PRG that takes a seed of few bits of randomness and outputs a $n$-dimensional vector whose distribution is indistinguishable from a standard multivariate gaussian by a degree $d$ PTF. Our main result is a PRG that takes a seed of $d{O(1)}\log ( n / \varepsilon)\log(1/\varepsilon)/\varepsilon2$ random bits with output that cannot be distinguished from $n$-dimensional gaussian distribution with advantage better than $\varepsilon$ by degree $d$ PTFs. The best previous generator due to O'Donnell, Servedio, and Tan (STOC'20) had a quasi-polynomial dependence (i.e., seedlength of $d{O(\log d)}$) in the degree $d$. Along the way we prove a few nearly-tight structural properties of restrictions of PTFs that may be of independent interest.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com