Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Persistence Homology of TEDtalk: Do Sentence Embeddings Have a Topological Shape? (2103.14131v1)

Published 25 Mar 2021 in cs.LG

Abstract: \emph{Topological data analysis} (TDA) has recently emerged as a new technique to extract meaningful discriminitve features from high dimensional data. In this paper, we investigate the possibility of applying TDA to improve the classification accuracy of public speaking rating. We calculated \emph{persistence image vectors} for the sentence embeddings of TEDtalk data and feed this vectors as additional inputs to our machine learning models. We have found a negative result that this topological information does not improve the model accuracy significantly. In some cases, it makes the accuracy slightly worse than the original one. From our results, we could not conclude that the topological shapes of the sentence embeddings can help us train a better model for public speaking rating.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.