Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Domain Specific Concept Drift Detectors for Predicting Financial Time Series (2103.14079v3)

Published 22 Mar 2021 in q-fin.ST and cs.LG

Abstract: Concept drift detectors allow learning systems to maintain good accuracy on non-stationary data streams. Financial time series are an instance of non-stationary data streams whose concept drifts (market phases) are so important to affect investment decisions worldwide. This paper studies how concept drift detectors behave when applied to financial time series. General results are: a) concept drift detectors usually improve the runtime over continuous learning, b) their computational cost is usually a fraction of the learning and prediction steps of even basic learners, c) it is important to study concept drift detectors in combination with the learning systems they will operate with, and d) concept drift detectors can be directly applied to the time series of raw financial data and not only to the model's accuracy one. Moreover, the study introduces three simple concept drift detectors, tailored to financial time series, and shows that two of them can be at least as effective as the most sophisticated ones from the state of the art when applied to financial time series. Currently submitted to Pattern Recognition

Citations (4)

Summary

We haven't generated a summary for this paper yet.