Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Visual Grounding Strategies for Text-Only Natural Language Processing (2103.13942v1)

Published 25 Mar 2021 in cs.CL

Abstract: Visual grounding is a promising path toward more robust and accurate NLP models. Many multimodal extensions of BERT (e.g., VideoBERT, LXMERT, VL-BERT) allow a joint modeling of texts and images that lead to state-of-the-art results on multimodal tasks such as Visual Question Answering. Here, we leverage multimodal modeling for purely textual tasks (LLMing and classification) with the expectation that the multimodal pretraining provides a grounding that can improve text processing accuracy. We propose possible strategies in this respect. A first type of strategy, referred to as {\it transferred grounding} consists in applying multimodal models to text-only tasks using a placeholder to replace image input. The second one, which we call {\it associative grounding}, harnesses image retrieval to match texts with related images during both pretraining and text-only downstream tasks. We draw further distinctions into both strategies and then compare them according to their impact on LLMing and commonsense-related downstream tasks, showing improvement over text-only baselines.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)