Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

CNN vs ELM for Image-Based Malware Classification (2103.13820v1)

Published 24 Mar 2021 in cs.CR and cs.LG

Abstract: Research in the field of malware classification often relies on machine learning models that are trained on high-level features, such as opcodes, function calls, and control flow graphs. Extracting such features is costly, since disassembly or code execution is generally required. In this paper, we conduct experiments to train and evaluate machine learning models for malware classification, based on features that can be obtained without disassembly or execution of code. Specifically, we visualize malware samples as images and employ image analysis techniques. In this context, we focus on two machine learning models, namely, Convolutional Neural Networks (CNN) and Extreme Learning Machines (ELM). Surprisingly, we find that ELMs can achieve accuracies on par with CNNs, yet ELM training requires less than~2\%\ of the time needed to train a comparable CNN.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.