Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

AttrLostGAN: Attribute Controlled Image Synthesis from Reconfigurable Layout and Style (2103.13722v2)

Published 25 Mar 2021 in cs.CV

Abstract: Conditional image synthesis from layout has recently attracted much interest. Previous approaches condition the generator on object locations as well as class labels but lack fine-grained control over the diverse appearance aspects of individual objects. Gaining control over the image generation process is fundamental to build practical applications with a user-friendly interface. In this paper, we propose a method for attribute controlled image synthesis from layout which allows to specify the appearance of individual objects without affecting the rest of the image. We extend a state-of-the-art approach for layout-to-image generation to additionally condition individual objects on attributes. We create and experiment on a synthetic, as well as the challenging Visual Genome dataset. Our qualitative and quantitative results show that our method can successfully control the fine-grained details of individual objects when modelling complex scenes with multiple objects. Source code, dataset and pre-trained models are publicly available (https://github.com/stanifrolov/AttrLostGAN).

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com