Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Spatial-spectral Hyperspectral Image Classification via Multiple Random Anchor Graphs Ensemble Learning (2103.13710v1)

Published 25 Mar 2021 in cs.CV

Abstract: Graph-based semi-supervised learning methods, which deal well with the situation of limited labeled data, have shown dominant performance in practical applications. However, the high dimensionality of hyperspectral images (HSI) makes it hard to construct the pairwise adjacent graph. Besides, the fine spatial features that help improve the discriminability of the model are often overlooked. To handle the problems, this paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE). Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region. Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity. Finally, an ensemble model is built by utilizing multiple anchor graphs, such that the diversity of HSI is learned. Extensive experiments show that RAGE is competitive against the state-of-the-art approaches.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.