Emergent Mind

Rethinking Self-Supervised Learning: Small is Beautiful

(2103.13559)
Published Mar 25, 2021 in cs.CV and cs.LG

Abstract

Self-supervised learning (SSL), in particular contrastive learning, has made great progress in recent years. However, a common theme in these methods is that they inherit the learning paradigm from the supervised deep learning scenario. Current SSL methods are often pretrained for many epochs on large-scale datasets using high resolution images, which brings heavy computational cost and lacks flexibility. In this paper, we demonstrate that the learning paradigm for SSL should be different from supervised learning and the information encoded by the contrastive loss is expected to be much less than that encoded in the labels in supervised learning via the cross entropy loss. Hence, we propose scaled-down self-supervised learning (S3L), which include 3 parts: small resolution, small architecture and small data. On a diverse set of datasets, SSL methods and backbone architectures, S3L achieves higher accuracy consistently with much less training cost when compared to previous SSL learning paradigm. Furthermore, we show that even without a large pretraining dataset, S3L can achieve impressive results on small data alone. Our code has been made publically available at https://github.com/CupidJay/Scaled-down-self-supervised-learning.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.