Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Feature Weighted Non-negative Matrix Factorization (2103.13491v1)

Published 24 Mar 2021 in eess.IV and cs.LG

Abstract: Non-negative Matrix Factorization (NMF) is one of the most popular techniques for data representation and clustering, and has been widely used in machine learning and data analysis. NMF concentrates the features of each sample into a vector, and approximates it by the linear combination of basis vectors, such that the low-dimensional representations are achieved. However, in real-world applications, the features are usually with different importances. To exploit the discriminative features, some methods project the samples into the subspace with a transformation matrix, which disturbs the original feature attributes and neglects the diversity of samples. To alleviate the above problems, we propose the Feature weighted Non-negative Matrix Factorization (FNMF) in this paper. The salient properties of FNMF can be summarized as threefold: 1) it learns the weights of features adaptively according to their importances; 2) it utilizes multiple feature weighting components to preserve the diversity; 3) it can be solved efficiently with the suggested optimization algorithm. Performance on synthetic and real-world datasets demonstrate that the proposed method obtains the state-of-the-art performance.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube