Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Feature Weighted Non-negative Matrix Factorization (2103.13491v1)

Published 24 Mar 2021 in eess.IV and cs.LG

Abstract: Non-negative Matrix Factorization (NMF) is one of the most popular techniques for data representation and clustering, and has been widely used in machine learning and data analysis. NMF concentrates the features of each sample into a vector, and approximates it by the linear combination of basis vectors, such that the low-dimensional representations are achieved. However, in real-world applications, the features are usually with different importances. To exploit the discriminative features, some methods project the samples into the subspace with a transformation matrix, which disturbs the original feature attributes and neglects the diversity of samples. To alleviate the above problems, we propose the Feature weighted Non-negative Matrix Factorization (FNMF) in this paper. The salient properties of FNMF can be summarized as threefold: 1) it learns the weights of features adaptively according to their importances; 2) it utilizes multiple feature weighting components to preserve the diversity; 3) it can be solved efficiently with the suggested optimization algorithm. Performance on synthetic and real-world datasets demonstrate that the proposed method obtains the state-of-the-art performance.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.