Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 167 tok/s Pro
GPT OSS 120B 400 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

CLAMGen: Closed-Loop Arm Motion Generation via Multi-view Vision-Based RL (2103.13267v1)

Published 24 Mar 2021 in cs.RO and cs.LG

Abstract: We propose a vision-based reinforcement learning (RL) approach for closed-loop trajectory generation in an arm reaching problem. Arm trajectory generation is a fundamental robotics problem which entails finding collision-free paths to move the robot's body (e.g. arm) in order to satisfy a goal (e.g. place end-effector at a point). While classical methods typically require the model of the environment to solve a planning, search or optimization problem, learning-based approaches hold the promise of directly mapping from observations to robot actions. However, learning a collision-avoidance policy using RL remains a challenge for various reasons, including, but not limited to, partial observability, poor exploration, low sample efficiency, and learning instabilities. To address these challenges, we present a residual-RL method that leverages a greedy goal-reaching RL policy as the base to improve exploration, and the base policy is augmented with residual state-action values and residual actions learned from images to avoid obstacles. Further more, we introduce novel learning objectives and techniques to improve 3D understanding from multiple image views and sample efficiency of our algorithm. Compared to RL baselines, our method achieves superior performance in terms of success rate.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com