Passivity preserving model reduction via spectral factorization (2103.13194v3)
Abstract: We present a novel model-order reduction (MOR) method for linear time-invariant systems that preserves passivity and is thus suited for structure-preserving MOR for port-Hamiltonian (pH) systems. Our algorithm exploits the well-known spectral factorization of the Popov function by a solution of the Kalman-Yakubovich-Popov (KYP) inequality. It performs MOR directly on the spectral factor inheriting the original system's sparsity enabling MOR in a large-scale context. Our analysis reveals that the spectral factorization corresponding to the minimal solution of an associated algebraic Riccati equation is preferable from a model reduction perspective and benefits pH-preserving MOR methods such as a modified version of the iterative rational Krylov algorithm (IRKA). Numerical examples demonstrate that our approach can produce high-fidelity reduced-order models close to (unstructured) $\mathcal{H}_2$-optimal reduced-order models.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.