Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Exploiting the Unique Expression for Improved Sentiment Analysis in Software Engineering Text (2103.13154v1)

Published 24 Mar 2021 in cs.SE

Abstract: Sentiment analysis on software engineering (SE) texts has been widely used in the SE research, such as evaluating app reviews or analyzing developers sentiments in commit messages. To better support the use of automated sentiment analysis for SE tasks, researchers built an SE-domain-specified sentiment dictionary to further improve the accuracy of the results. Unfortunately, recent work reported that current mainstream tools for sentiment analysis still cannot provide reliable results when analyzing the sentiments in SE texts. We suggest that the reason for this situation is because the way of expressing sentiments in SE texts is largely different from the way in social network or movie comments. In this paper, we propose to improve sentiment analysis in SE texts by using sentence structures, a different perspective from building a domain dictionary. Specifically, we use sentence structures to first identify whether the author is expressing her sentiment in a given clause of an SE text, and to further adjust the calculation of sentiments which are confirmed in the clause. An empirical evaluation based on four different datasets shows that our approach can outperform two dictionary-based baseline approaches, and is more generalizable compared to a learning-based baseline approach.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.