Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

A VAE-Bayesian Deep Learning Scheme for Solar Generation Forecasting based on Dimensionality Reduction (2103.12969v2)

Published 24 Mar 2021 in cs.LG and eess.SP

Abstract: The advancement of distributed generation technologies in modern power systems has led to a widespread integration of renewable power generation at customer side. However, the intermittent nature of renewable energy poses new challenges to the network operational planning with underlying uncertainties. This paper proposes a novel Bayesian probabilistic technique for forecasting renewable solar generation by addressing data and model uncertainties by integrating bidirectional long short-term memory (BiLSTM) neural networks while compressing the weight parameters using variational autoencoder (VAE). Existing Bayesian deep learning methods suffer from high computational complexities as they require to draw a large number of samples from weight parameters expressed in the form of probability distributions. The proposed method can deal with uncertainty present in model and data in a more computationally efficient manner by reducing the dimensionality of model parameters. The proposed method is evaluated using quantile loss, reconstruction error, and deterministic forecasting evaluation metrics such as root-mean square error. It is inferred from the numerical results that VAE-Bayesian BiLSTM outperforms other probabilistic and deterministic deep learning methods for solar power forecasting in terms of accuracy and computational efficiency for different sizes of the dataset.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.