Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Teacher-Explorer-Student Learning: A Novel Learning Method for Open Set Recognition (2103.12871v1)

Published 23 Mar 2021 in cs.CV and cs.AI

Abstract: If an unknown example that is not seen during training appears, most recognition systems usually produce overgeneralized results and determine that the example belongs to one of the known classes. To address this problem, teacher-explorer-student (T/E/S) learning, which adopts the concept of open set recognition (OSR) that aims to reject unknown samples while minimizing the loss of classification performance on known samples, is proposed in this study. In this novel learning method, overgeneralization of deep learning classifiers is significantly reduced by exploring various possibilities of unknowns. Here, the teacher network extracts some hints about unknowns by distilling the pretrained knowledge about knowns and delivers this distilled knowledge to the student. After learning the distilled knowledge, the student network shares the learned information with the explorer network. Then, the explorer network shares its exploration results by generating unknown-like samples and feeding the samples to the student network. By repeating this alternating learning process, the student network experiences a variety of synthetic unknowns, reducing overgeneralization. Extensive experiments were conducted, and the experimental results showed that each component proposed in this paper significantly contributes to the improvement in OSR performance. As a result, the proposed T/E/S learning method outperformed current state-of-the-art methods.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.