Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fully-echoed Q-routing with Simulated Annealing Inference for Flying Adhoc Networks (2103.12870v1)

Published 23 Mar 2021 in cs.NI and cs.LG

Abstract: Current networking protocols deem inefficient in accommodating the two key challenges of Unmanned Aerial Vehicle (UAV) networks, namely the network connectivity loss and energy limitations. One approach to solve these issues is using learning-based routing protocols to make close-to-optimal local decisions by the network nodes, and Q-routing is a bold example of such protocols. However, the performance of the current implementations of Q-routing algorithms is not yet satisfactory, mainly due to the lack of adaptability to continued topology changes. In this paper, we propose a full-echo Q-routing algorithm with a self-adaptive learning rate that utilizes Simulated Annealing (SA) optimization to control the exploration rate of the algorithm through the temperature decline rate, which in turn is regulated by the experienced variation rate of the Q-values. Our results show that our method adapts to the network dynamicity without the need for manual re-initialization at transition points (abrupt network topology changes). Our method exhibits a reduction in the energy consumption ranging from 7% up to 82%, as well as a 2.6 fold gain in successful packet delivery rate}, compared to the state of the art Q-routing protocols

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.