Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Enhanced Gradient for Differentiable Architecture Search (2103.12529v1)

Published 23 Mar 2021 in cs.CV

Abstract: In recent years, neural architecture search (NAS) methods have been proposed for the automatic generation of task-oriented network architecture in image classification. However, the architectures obtained by existing NAS approaches are optimized only for classification performance and do not adapt to devices with limited computational resources. To address this challenge, we propose a neural network architecture search algorithm aiming to simultaneously improve network performance (e.g., classification accuracy) and reduce network complexity. The proposed framework automatically builds the network architecture at two stages: block-level search and network-level search. At the stage of block-level search, a relaxation method based on the gradient is proposed, using an enhanced gradient to design high-performance and low-complexity blocks. At the stage of network-level search, we apply an evolutionary multi-objective algorithm to complete the automatic design from blocks to the target network. The experiment results demonstrate that our method outperforms all evaluated hand-crafted networks in image classification, with an error rate of on CIFAR10 and an error rate of on CIFAR100, both at network parameter size less than one megabit. Moreover, compared with other neural architecture search methods, our method offers a tremendous reduction in designed network architecture parameters.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.