Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 420 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Approximately Counting Answers to Conjunctive Queries with Disequalities and Negations (2103.12468v3)

Published 23 Mar 2021 in cs.DM, cs.CC, and cs.DB

Abstract: We study the complexity of approximating the number of answers to a small query $\varphi$ in a large database $\mathcal{D}$. We establish an exhaustive classification into tractable and intractable cases if $\varphi$ is a conjunctive query with disequalities and negations: $\bullet$ If there is a constant bound on the arity of $\varphi$, and if the randomised Exponential Time Hypothesis (rETH) holds, then the problem has a fixed-parameter tractable approximation scheme (FPTRAS) if and only if the treewidth of $\varphi$ is bounded. $\bullet$ If the arity is unbounded and we allow disequalities only, then the problem has an FPTRAS if and only if the adaptive width of $\varphi$ (a width measure strictly more general than treewidth) is bounded; the lower bound relies on the rETH as well. Additionally we show that our results cannot be strengthened to achieve a fully polynomial randomised approximation scheme (FPRAS): We observe that, unless $\mathrm{NP} =\mathrm{RP}$, there is no FPRAS even if the treewidth (and the adaptive width) is $1$. However, if there are neither disequalities nor negations, we prove the existence of an FPRAS for queries of bounded fractional hypertreewidth, strictly generalising the recently established FPRAS for conjunctive queries with bounded hypertreewidth due to Arenas, Croquevielle, Jayaram and Riveros (STOC 2021).

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.