Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Dual Mesh Convolutional Networks for Human Shape Correspondence (2103.12459v2)

Published 23 Mar 2021 in cs.CV

Abstract: Convolutional networks have been extremely successful for regular data structures such as 2D images and 3D voxel grids. The transposition to meshes is, however, not straight-forward due to their irregular structure. We explore how the dual, face-based representation of triangular meshes can be leveraged as a data structure for graph convolutional networks. In the dual mesh, each node (face) has a fixed number of neighbors, which makes the networks less susceptible to overfitting on the mesh topology, and also al-lows the use of input features that are naturally defined over faces, such as surface normals and face areas. We evaluate the dual approach on the shape correspondence task on theFaust human shape dataset and variants of it with differ-ent mesh topologies. Our experiments show that results of graph convolutional networks improve when defined over the dual rather than primal mesh. Moreover, our models that explicitly leverage the neighborhood regularity of dual meshes allow improving results further while being more robust to changes in the mesh topology.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube