Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hallucination of speech recognition errors with sequence to sequence learning (2103.12258v3)

Published 23 Mar 2021 in cs.CL and cs.LG

Abstract: Automatic Speech Recognition (ASR) is an imperfect process that results in certain mismatches in ASR output text when compared to plain written text or transcriptions. When plain text data is to be used to train systems for spoken language understanding or ASR, a proven strategy to reduce said mismatch and prevent degradations, is to hallucinate what the ASR outputs would be given a gold transcription. Prior work in this domain has focused on modeling errors at the phonetic level, while using a lexicon to convert the phones to words, usually accompanied by an FST LLM. We present novel end-to-end models to directly predict hallucinated ASR word sequence outputs, conditioning on an input word sequence as well as a corresponding phoneme sequence. This improves prior published results for recall of errors from an in-domain ASR system's transcription of unseen data, as well as an out-of-domain ASR system's transcriptions of audio from an unrelated task, while additionally exploring an in-between scenario when limited characterization data from the test ASR system is obtainable. To verify the extrinsic validity of the method, we also use our hallucinated ASR errors to augment training for a spoken question classifier, finding that they enable robustness to real ASR errors in a downstream task, when scarce or even zero task-specific audio was available at train-time.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.