Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Spatio-Temporal Sparsification for General Robust Graph Convolution Networks (2103.12256v1)

Published 23 Mar 2021 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNNs) have attracted increasing attention due to its successful applications on various graph-structure data. However, recent studies have shown that adversarial attacks are threatening the functionality of GNNs. Although numerous works have been proposed to defend adversarial attacks from various perspectives, most of them can be robust against the attacks only on specific scenarios. To address this shortage of robust generalization, we propose to defend the adversarial attacks on GNN through applying the Spatio-Temporal sparsification (called ST-Sparse) on the GNN hidden node representation. ST-Sparse is similar to the Dropout regularization in spirit. Through intensive experiment evaluation with GCN as the target GNN model, we identify the benefits of ST-Sparse as follows: (1) ST-Sparse shows the defense performance improvement in most cases, as it can effectively increase the robust accuracy by up to 6\% improvement; (2) ST-Sparse illustrates its robust generalization capability by integrating with the existing defense methods, similar to the integration of Dropout into various deep learning models as a standard regularization technique; (3) ST-Sparse also shows its ordinary generalization capability on clean datasets, in that ST-SparseGCN (the integration of ST-Sparse and the original GCN) even outperform the original GCN, while the other three representative defense methods are inferior to the original GCN.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)