Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the nonlinear Dirichlet-Neumann method and preconditioner for Newton's method (2103.12203v3)

Published 22 Mar 2021 in math.NA and cs.NA

Abstract: The Dirichlet-Neumann (DN) method has been extensively studied for linear partial differential equations, while little attention has been devoted to the nonlinear case. In this paper, we analyze the DN method both as a nonlinear iterative method and as a preconditioner for Newton's method. We discuss the nilpotent property and prove that under special conditions, there exists a relaxation parameter such that the DN method converges quadratically. We further prove that the convergence of Newton's method preconditioned by the DN method is independent of the relaxation parameter. Our numerical experiments further illustrate the mesh independent convergence of the DN method and compare it with other standard nonlinear preconditioners.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.