Papers
Topics
Authors
Recent
2000 character limit reached

Deconvolution-and-convolution Networks (2103.11887v1)

Published 22 Mar 2021 in cs.CV and cs.AI

Abstract: 2D Convolutional neural network (CNN) has arguably become the de facto standard for computer vision tasks. Recent findings, however, suggest that CNN may not be the best option for 1D pattern recognition, especially for datasets with over 1 M training samples, e.g., existing CNN-based methods for 1D signals are highly reliant on human pre-processing. Common practices include utilizing discrete Fourier transform (DFT) to reconstruct 1D signal into 2D array. To add to extant knowledge, in this paper, a novel 1D data processing algorithm is proposed for 1D big data analysis through learning a deep deconvolutional-convolutional network. Rather than resorting to human-based techniques, we employed deconvolution layers to convert 1 D signals into 2D data. On top of the deconvolution model, the data was identified by a 2D CNN. Compared with the existing 1D signal processing algorithms, DCNet boasts the advantages of less human-made inference and higher generalization performance. Our experimental results from a varying number of training patterns (50 K to 11 M) from classification and regression demonstrate the desirability of our new approach.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.