Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mathematical Theory of Computational Resolution Limit in Multi-dimensions (2103.11632v1)

Published 22 Mar 2021 in eess.IV and eess.SP

Abstract: Resolving a linear combination of point sources from their band-limited Fourier data is a fundamental problem in imaging and signal processing. With the incomplete Fourier data and the inevitable noise in the measurement, there is a fundamental limit on the separation distance between point sources that can be resolved. This is the so-called resolution limit problem. Characterization of this resolution limit is still a long-standing puzzle despite the prevalent use of the classic Rayleigh limit. It is well-known that Rayleigh limit is heuristic and its drawbacks become prominent when dealing with data that is subjected to delicate processing, as is what modern computational imaging methods do. Therefore, more precise characterization of the resolution limit becomes increasingly necessary with the development of data processing methods. For this purpose, we developed a theory of "computational resolution limit" for both number detection and support recovery in one dimension in [arXiv:2003.02917[cs.IT], arXiv:1912.05430[eess.IV]]. In this paper, we extend the one-dimensional theory to multi-dimensions. More precisely, we define and quantitatively characterize the "computational resolution limit" for the number detection and support recovery problems in a general k-dimensional space. Our results indicate that there exists a phase transition phenomenon regarding to the super-resolution factor and the signal-to-noise ratio in each of the two recovery problems. Our main results are derived using a subspace projection strategy. Finally, to verify the theory, we proposed deterministic subspace projection based algorithms for the number detection and support recovery problems in dimension two and three. The numerical results confirm the phase transition phenomenon predicted by the theory.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)