Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Convex Parameterization and Optimization for Robust Tracking of a Magnetically Levitated Planar Positioning System (2103.11569v2)

Published 22 Mar 2021 in eess.SY, cs.SY, and math.OC

Abstract: Magnetic levitation positioning technology has attracted considerable research efforts and dedicated attention due to its extremely attractive features. The technology offers high-precision, contactless, dust/lubricant-free, multi-axis, and large-stroke positioning. In this work, we focus on the accurate and smooth tracking problem of a multi-axis magnetically levitated (maglev) planar positioning system for a specific S-curve reference trajectory. The floating characteristics and the multi-axis coupling make accurate identification of the system dynamics difficult, which lead to a challenge to design a high performance control system. Here, the tracking task is achieved by a 2-Degree of Freedom (DoF) controller consisting of a feedforward controller and a robust stabilizing feedback controller with a prescribed sparsity pattern. The approach proposed in this paper utilizes the basis of an H-infinity controller formulation and a suitably established convex inner approximation. Particularly, a subset of robust stabilizable controllers with prescribed structural constraints is characterized in the parameter space, and so thus the re-formulated convex optimization problem can be easily solved by several powerful numerical algorithms and solvers. With this approach, the robust stability of the overall system is ensured with a satisfactory system performance despite the presence of parametric uncertainties. Furthermore, experimental results clearly demonstrate the effectiveness of the proposed approach.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.