Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

#PraCegoVer: A Large Dataset for Image Captioning in Portuguese (2103.11474v2)

Published 21 Mar 2021 in cs.CV and cs.CL

Abstract: Automatically describing images using natural sentences is an important task to support visually impaired people's inclusion onto the Internet. It is still a big challenge that requires understanding the relation of the objects present in the image and their attributes and actions they are involved in. Then, visual interpretation methods are needed, but linguistic models are also necessary to verbally describe the semantic relations. This problem is known as Image Captioning. Although many datasets were proposed in the literature, the majority contains only English captions, whereas datasets with captions described in other languages are scarce. Recently, a movement called PraCegoVer arose on the Internet, stimulating users from social media to publish images, tag #PraCegoVer and add a short description of their content. Thus, inspired by this movement, we have proposed the #PraCegoVer, a multi-modal dataset with Portuguese captions based on posts from Instagram. It is the first large dataset for image captioning in Portuguese with freely annotated images. Further, the captions in our dataset bring additional challenges to the problem: first, in contrast to popular datasets such as MS COCO Captions, #PraCegoVer has only one reference to each image; also, both mean and variance of our reference sentence length are significantly greater than those in the MS COCO Captions. These two characteristics contribute to making our dataset interesting due to the linguistic aspect and the challenges that it introduces to the image captioning problem. We publicly-share the dataset at https://github.com/gabrielsantosrv/PraCegoVer.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.