Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SEMIE: SEMantically Infused Embeddings with Enhanced Interpretability for Domain-specific Small Corpus (2103.11431v1)

Published 21 Mar 2021 in cs.CL and cs.LG

Abstract: Word embeddings are a basic building block of modern NLP pipelines. Efforts have been made to learn rich, efficient, and interpretable embeddings for large generic datasets available in the public domain. However, these embeddings have limited applicability for small corpora from specific domains such as automotive, manufacturing, maintenance and support, etc. In this work, we present a comprehensive notion of interpretability for word embeddings and propose a novel method to generate highly interpretable and efficient embeddings for a domain-specific small corpus. We report the evaluation results of our resulting word embeddings and demonstrate their novel features for enhanced interpretability.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.