Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Online Convex Optimization with Continuous Switching Constraint (2103.11370v1)

Published 21 Mar 2021 in cs.LG and math.OC

Abstract: In many sequential decision making applications, the change of decision would bring an additional cost, such as the wear-and-tear cost associated with changing server status. To control the switching cost, we introduce the problem of online convex optimization with continuous switching constraint, where the goal is to achieve a small regret given a budget on the \emph{overall} switching cost. We first investigate the hardness of the problem, and provide a lower bound of order $\Omega(\sqrt{T})$ when the switching cost budget $S=\Omega(\sqrt{T})$, and $\Omega(\min{\frac{T}{S},T})$ when $S=O(\sqrt{T})$, where $T$ is the time horizon. The essential idea is to carefully design an adaptive adversary, who can adjust the loss function according to the cumulative switching cost of the player incurred so far based on the orthogonal technique. We then develop a simple gradient-based algorithm which enjoys the minimax optimal regret bound. Finally, we show that, for strongly convex functions, the regret bound can be improved to $O(\log T)$ for $S=\Omega(\log T)$, and $O(\min{T/\exp(S)+S,T})$ for $S=O(\log T)$.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.