Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Online Strongly Convex Optimization with Unknown Delays (2103.11354v1)

Published 21 Mar 2021 in cs.LG and math.OC

Abstract: We investigate the problem of online convex optimization with unknown delays, in which the feedback of a decision arrives with an arbitrary delay. Previous studies have presented a delayed variant of online gradient descent (OGD), and achieved the regret bound of $O(\sqrt{T+D})$ by only utilizing the convexity condition, where $D$ is the sum of delays over $T$ rounds. In this paper, we further exploit the strong convexity to improve the regret bound. Specifically, we first extend the delayed variant of OGD for strongly convex functions, and establish a better regret bound of $O(d\log T)$, where $d$ is the maximum delay. The essential idea is to let the learning rate decay with the total number of received feedback linearly. Furthermore, we consider the more challenging bandit setting, and obtain similar theoretical guarantees by incorporating the classical multi-point gradient estimator into our extended method. To the best of our knowledge, this is the first work that solves online strongly convex optimization under the general delayed setting.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.