Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 133 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reference-Aided Part-Aligned Feature Disentangling for Video Person Re-Identification (2103.11319v1)

Published 21 Mar 2021 in cs.CV

Abstract: Recently, video-based person re-identification (re-ID) has drawn increasing attention in compute vision community because of its practical application prospects. Due to the inaccurate person detections and pose changes, pedestrian misalignment significantly increases the difficulty of feature extraction and matching. To address this problem, in this paper, we propose a \textbf{R}eference-\textbf{A}ided \textbf{P}art-\textbf{A}ligned (\textbf{RAPA}) framework to disentangle robust features of different parts. Firstly, in order to obtain better references between different videos, a pose-based reference feature learning module is introduced. Secondly, an effective relation-based part feature disentangling module is explored to align frames within each video. By means of using both modules, the informative parts of pedestrian in videos are well aligned and more discriminative feature representation is generated. Comprehensive experiments on three widely-used benchmarks, i.e. iLIDS-VID, PRID-2011 and MARS datasets verify the effectiveness of the proposed framework. Our code will be made publicly available.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.