Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Dense Multi-scale Network for Snow Removal Using Semantic and Geometric Priors (2103.11298v1)

Published 21 Mar 2021 in cs.CV

Abstract: Images captured in snowy days suffer from noticeable degradation of scene visibility, which degenerates the performance of current vision-based intelligent systems. Removing snow from images thus is an important topic in computer vision. In this paper, we propose a Deep Dense Multi-Scale Network (\textbf{DDMSNet}) for snow removal by exploiting semantic and geometric priors. As images captured in outdoor often share similar scenes and their visibility varies with depth from camera, such semantic and geometric information provides a strong prior for snowy image restoration. We incorporate the semantic and geometric maps as input and learn the semantic-aware and geometry-aware representation to remove snow. In particular, we first create a coarse network to remove snow from the input images. Then, the coarsely desnowed images are fed into another network to obtain the semantic and geometric labels. Finally, we design a DDMSNet to learn semantic-aware and geometry-aware representation via a self-attention mechanism to produce the final clean images. Experiments evaluated on public synthetic and real-world snowy images verify the superiority of the proposed method, offering better results both quantitatively and qualitatively.

Citations (95)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.