Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bayesian Distributional Policy Gradients (2103.11265v2)

Published 20 Mar 2021 in cs.LG

Abstract: Distributional Reinforcement Learning (RL) maintains the entire probability distribution of the reward-to-go, i.e. the return, providing more learning signals that account for the uncertainty associated with policy performance, which may be beneficial for trading off exploration and exploitation and policy learning in general. Previous works in distributional RL focused mainly on computing the state-action-return distributions, here we model the state-return distributions. This enables us to translate successful conventional RL algorithms that are based on state values into distributional RL. We formulate the distributional BeLLMan operation as an inference-based auto-encoding process that minimises Wasserstein metrics between target/model return distributions. The proposed algorithm, BDPG (Bayesian Distributional Policy Gradients), uses adversarial training in joint-contrastive learning to estimate a variational posterior from the returns. Moreover, we can now interpret the return prediction uncertainty as an information gain, which allows to obtain a new curiosity measure that helps BDPG steer exploration actively and efficiently. We demonstrate in a suite of Atari 2600 games and MuJoCo tasks, including well known hard-exploration challenges, how BDPG learns generally faster and with higher asymptotic performance than reference distributional RL algorithms.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.