Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Level Set Kalman Filter for State Estimation of Continuous-discrete Systems (2103.11130v3)

Published 20 Mar 2021 in eess.SY and cs.SY

Abstract: We propose a new extension of Kalman filtering for continuous-discrete systems with nonlinear state-space models that we name as the level set Kalman filter (LSKF). The LSKF assumes the probability distribution can be approximated as a Gaussian, and updates the Gaussian distribution through a time-update step and a measurement-update step. The LSKF improves the time-update step when compared to existing methods, such as the continuous-discrete cubature Kalman filter (CD-CKF) by reformulating the underlying Fokker-Planck equation as an ordinary differential equation for the Gaussian, thereby avoiding expansion in time. Together with a carefully picked measurement-update method, numerical experiments show that the LSKF has a consistent performance improvement over CD-CKF for a range of parameters, while also simplifies the implementation, as no user-defined timestep subdivision between measurements is required, and the spatial derivatives of the drift function are not explicitly needed.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.