Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Keywords Guided Method Name Generation (2103.11118v1)

Published 20 Mar 2021 in cs.SE

Abstract: High quality method names are descriptive and readable, which are helpful for code development and maintenance. The majority of recent research suggest method names based on the text summarization approach. They take the token sequence and abstract syntax tree of the source code as input, and generate method names through a powerful neural network based model. However, the tokens composing the method name are closely related to the entity name within its method implementation. Actually, high proportions of the tokens in method name can be found in its corresponding method implementation, which makes it possible for incorporating these common shared token information to improve the performance of method naming task. Inspired by this key observation, we propose a two-stage keywords guided method name generation approach to suggest method names. Specifically, we decompose the method naming task into two subtasks, including keywords extraction task and method name generation task. For the keywords extraction task, we apply a graph neural network based model to extract the keywords from source code. For the method name generation task, we utilize the extracted keywords to guide the method name generation model. We apply a dual selective gate in encoder to control the information flow, and a dual attention mechanism in decoder to combine the semantics of input code sequence and keywords. Experiment results on an open source dataset demonstrate that keywords guidance can facilitate method naming task, which enables our model to outperform the competitive state-of-the-art models by margins of 1.5\%-3.5\% in ROUGE metrics. Especially when programs share one common token with method names, our approach improves the absolute ROUGE-1 score by 7.8\%.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)