Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 77 tok/s
Gemini 3.0 Pro 40 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 190 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Dependency Graph-to-String Statistical Machine Translation (2103.11089v1)

Published 20 Mar 2021 in cs.CL and cs.AI

Abstract: We present graph-based translation models which translate source graphs into target strings. Source graphs are constructed from dependency trees with extra links so that non-syntactic phrases are connected. Inspired by phrase-based models, we first introduce a translation model which segments a graph into a sequence of disjoint subgraphs and generates a translation by combining subgraph translations left-to-right using beam search. However, similar to phrase-based models, this model is weak at phrase reordering. Therefore, we further introduce a model based on a synchronous node replacement grammar which learns recursive translation rules. We provide two implementations of the model with different restrictions so that source graphs can be parsed efficiently. Experiments on Chinese--English and German--English show that our graph-based models are significantly better than corresponding sequence- and tree-based baselines.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.